Stirling’s Formula

نویسنده

  • KEITH CONRAD
چکیده

Theorem 2.1. For all n ≥ 1, n log n− n < log(n!) < n log n, so log(n!) ∼ n log n. Proof. The inequality log(n!) < n log n is a consequence of the trivial inequality n! < nn. Here are three methods of showing n log n− n < log(n!). Method 1: A Riemann sum approximation for ∫ n 1 log x dx using right endpoints is log 2+ · · ·+ log n = log(n!), which overestimates, so log(n!) > ∫ n 1 log x dx = n log n− n+ 1. Method 2: The power series expansion of en is ∑ k≥0 n k/k!. Comparing en to the nth term in the series gives us en > nn/n!, so n! > nn/en. Therefore log(n!) > n log n− n. Method 3: For all k ≥ 1, e > (1 + 1/k)k. Multiplying this over k = 1, 2, . . . , n− 1, we get en−1 > nn−1/(n− 1)! = nn/n!, so n! > enn/en. Thus log(n!) > n log n− n+ 1. Dividing through the inequality n log n − n < log(n!) < n log n by n log n, we obtain 1− 1/ log n < log(n!)/(n log n) < 1, so log(n!) ∼ n log n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laplace’s Method, Fourier Analysis, and Random Walks on Z

1.1. Stirling’s formula. Laplace’s approach to Stirling’s formula is noteworthy first, because it makes a direct connection with the Gaussian (normal) distribution (whereas in other approaches the Gaussian distribution enters indirectly, or not at all), and second, because it provides a general strategy for the asymptotic approximation of a large class of integrals with a large parameter. Stirl...

متن کامل

An approximation for n! using Stirling’s formula

In this paper, an approximation for n! (given by Stirling’s formula) is calculated. The accuracy of this formula is also presented. Some improvisations on the accuracy are explored.

متن کامل

Stirling’s Formula Revisited via Some Classical and New Inequalities

The Hermite-Hadamard inequality is used to develop an approximation to the logarithm of the gamma function which is more accurate than the Stirling approximation and easier to derive. Then the concavity of the logarithm of gamma of logarithm is proved and applied to the Jensen inequality. Finally, the Wallis ratio is used to obtain the additional term in Stirling’s approximation formula. Mathem...

متن کامل

A New Proof of Stirling's Formula

A new, simple proof of Stirling’s formula via the partial fraction expansion for the tangent function is presented.

متن کامل

A Short Proof of Stirling's Formula

By changing variables in a suitable way and using dominated convergence methods, this note gives a short proof of Stirling’s formula and its refinement.

متن کامل

Chapter 1 Stirling ’ s Formula

How do the two most important fundamental constants of mathematics, e and π, find their way into an asymptotic formula for the product of integers? We give two very different arguments (one will not show the full formula) that, between them, illustrate a good number of basic asymptotic methods. The formal language of Asymptopia, such as o(n) and O(n), is deferred to Chapter 2. Two further argum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015